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ABSTRACT 

This study investigated the efficacy of the  person fit statistic for detecting 

aberrant responding with unidimensional pairwise preference (UPP) measures, 

constructed and scored based on the Zinnes-Griggs (ZG, 1974) IRT model, which has 

been used for a variety of recent noncognitive testing applications. Because UPP 

measures are used to collect both “self-” and “other-” reports, I explored the capability of  

 to detect two of the most common and potentially detrimental response sets, namely 

fake good and random responding. The effectiveness of  was studied using empirical 

and theoretical critical values for classification, along with test length, test information, 

the type of statement parameters, and the percentage of items answered aberrantly (20%, 

50%, 100%). We found that  was ineffective in detecting fake good responding, with 

power approaching zero in the 100% aberrance conditions. However,  was highly 

effective in detecting random responding, with power approaching 1.0 in long-test, high 

information conditions, and there was no diminution in efficacy when using marginal 

maximum likelihood estimates of statement parameters in place of the true values. 

Although using empirical critical values for classification provided slightly higher power 

and more accurate Type I error rates, theoretical critical values, corresponding to a 

standard normal distribution, provided nearly as good results.   
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INTRODUCTION 

In the fields of psychology and education, there are long histories of research on 

noncognitive constructs, such as personality, vocational interests, self-efficacy, and 

values. Measures administered in research settings for developmental and diagnostic 

purposes were shown early on to predict important outcomes and those successes raised 

intriguing possibilities about the use of noncognitive tests in the workplace. By the 

1950s, however, there were already concerns about the effects of response biases, such as 

halo error and impression management, on the validities of noncognitive scores for high 

stakes applications – most notably personnel selection and performance appraisal. Yet, 

despite these concerns, the need to expand selection testing beyond the cognitive ability 

realm for predicting a wider variety of job outcomes, the need to derive more accurate 

information about job performance from employee reviews, and the need for assessments 

that were quick and easy to administer sparked independent streams of research seeking 

alternatives to traditional Likert-type formats for noncognitive assessment.  

In the 1940s, U.S. military researchers explored the benefits of observer ratings of 

personality (Connelly & Ones, 2010) as well as forced choice assessment (e.g., Hicks, 

1970; Stark, Chernyshenko, Lee, Drasgow, White, & Young, 2011; Waters, 1965; White 

& Young, 1998) as alternatives to Likert-type self-report measures. Albeit through 

different mechanisms, both initiatives aimed to reduce social desirability response bias. 

In the same vein, the critical incident technique (Flanagan, 1954) was designed to 

improve the accuracy of employee appraisals by focusing the attention of raters on the  
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key elements of performance, thus reducing the effects of extraneous information. 

Critical incidents ultimately became the backbone of the behaviorally anchored rating 

scale (BARS; Smith & Kendall, 1963) appraisal method, which was designed to reduce 

the leniency, severity, central tendency, and halo errors often associated with Likert-type 

rating scales. BARS scales order critical incidents along a straight line in terms of 

effectiveness and require a rater to indicate which incident best characterizes a ratee’s 

typical behavior.   

In 1997, Borman, Hanson, Motowidlo, Drasgow, Foster, and Kubisiak proposed a 

“next-generation” version of BARS, called Computerized Adaptive Rating Scales 

(CARS; Borman, Buck, Hanson, Motowidlo, Stark, & Drasgow, 2001), which integrated 

research on observer ratings, forced choice assessment, and modern psychometric theory. 

Specifically, Borman et al. assessed contextual (i.e., citizenship) performance (Borman & 

Motowidlo, 1993) using computerized adaptive unidimensional pairwise preference 

(UPP) measures composed of pairs of statements that represented different levels of 

employee effectiveness. A rater’s task was to choose the statement in each pair that better 

characterized the behavior of the ratee. By making repeated pairwise preference 

judgments across items chosen dynamically via computerized adaptive testing (CAT) 

principles (Stark & Drasgow, 1998; Stark & Chernyshenko, 2011), measurement error 

was reduced relative to BARS and Likert-type graphical rating scales (Borman et al., 

2001).  

Since the Borman et al. (2001) study, the suitability of UPP measures has been 

explored for other organizational applications. For example, Borman and colleagues 

implemented adaptive UPP measurement in the Navy Computerized Adaptive 
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Personality Scales assessment (NCAPS; Houston, Borman, Farmer & Bearden, 2005; 

Underhill, Lords, & Bearden, 2006) and Chernyshenko, Stark, and Williams (2009) used 

nonadaptive UPP measures to assess dimensions of person-organization fit. Although 

evidence suggests that UPP scales mitigate the central tendency, leniency, and severity 

errors that commonly occur when raters evaluate other rating targets (Borman et al., 

2001), research is needed to examine their resistance to response biases associated with 

self-report data, such as socially desirable (fake good) and careless or random 

responding. Clearly, the validities of self-report applications in personality, person-

organization fit, attitude, and values assessment depend on the quality of data collected 

and the capability to detect response biases or, more generally, aberrant responding that 

may occur in the absence of external information to verify self-report claims. 

This manuscript describes a simulation study that examined the capability to 

detect two forms of aberrant responding with nonadaptive UPP measures constructed as 

described by Borman et al. (2001) and Stark et al. (2009). Specifically, this study 

examined the power and Type I error to detect fake good and random responding using 

the model-based standardized log likelihood statistic, known as  (Drasgow, Levine, & 

Williams, 1985; Drasgow, Levine, & McLaughlin, 1987). Over the years,  has been 

used to detect aberrant responding in connection with dichotomously and polytomously 

scored cognitive ability tests, as well as Likert-type noncognitive measures, but there has 

been little to no research on applications involving forced choice assessments. 

 is a model-based index that evaluates the standardized log likelihood of a 

respondent's answer pattern relative to critical values derived from statistical theory or 

empirical methods. If a respondent’s observed  is less than the critical value, the 
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response pattern is classified as aberrant; otherwise the pattern is classified as “normal.” 

In this context, normal means that a respondent answered items in accordance with the 

predictions of an underlying item response theory model, and aberrant means that the 

response pattern was inconsistent with model predictions.  

For the UPP applications described above, the model chosen to represent normal 

responding was the Zinnes and Griggs (ZG, 1974) ideal point IRT model. The ZG model 

assumes that when a rater is presented with a pair of statements describing different 

levels of, for example, effectiveness, conscientiousness, or autonomy, the rater carefully 

considers the statements and chooses the one in each pair that better describes the ratee. 

In contrast, aberrant responding, such as faking good and random responding, presumes a 

different psychological process. With UPP assessments, fake good responding implies a 

rater chooses the more positive or socially desirable statement in a UPP item, regardless 

of whether it accurately depicts the ratee. In work settings, fake good responding can 

occur when job applicants want to increase their scores to get hired, when raters wants to 

give positive impressions of well-liked coworkers in 360 degree appraisals, or when 

supervisors want to enhance their own reputations for employee development by 

manipulating the ratings of subordinates under their tutelage. Alternatively, random 

responding might occur when busy employees are surveyed too frequently without 

compensation, when respondents don’t understand the context or meaning of 

questionnaire items, or when supervisors have many subordinates to evaluate and are 

familiar with only a few. 

Before delving into details on how normal, faking good, and random responding 

can be simulated, I will briefly describe the Zinnes-Griggs IRT model, provide some 
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background on computations and factors affecting detection accuracy, and outline a 

Monte Carlo study to explore the efficacy of  for identifying random and fake good 

responding with ZG-based UPP tests.  

 

The Zinnes-Griggs IRT Model for UPP Responses 

The ZG model assumes that when presented with a pair of statements 

representing, for example, different levels of employee effectiveness, a rater (e.g., a 

supervisor) will choose the statement in each pair that better describes the performance of 

a ratee (e.g., a subordinate). Specifically, the rater will tend to choose the statement in 

each pair that is closer to the ratee’s perceived location on the performance continuum.  

Following the directions in italics, an example item from Borman et al.’s (2001) UPP 

assessment is shown below (see the Appendix for additional examples). 

In each pair that follows, please choose the statement that better describes the 

employee you are evaluating. Indicate your answer by marking an “x” in the 

space to the left of that statement. 

_____  1a. Gathers and then analyzes information from a variety of sources to  

develop effective and timely solutions to problems. 

__x__ 1b. Takes too long to make decisions due to his/her need to gather and  

analyze more information than necessary. 

Formally, if s and t represent the first and second statements in a performance appraisal 

item, Zinnes and Griggs (1974) showed that the probability of choosing or preferring 

statement s to statement t is given by:  

 

zl

zl

𝑃𝑠𝑡 𝜃 = 1 − Ф 𝑎𝑠𝑡 − Ф 𝑏𝑠𝑡 + 2Ф 𝑎𝑠𝑡 Ф 𝑏𝑠𝑡 , where                                       (1) 
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where  𝜃 represents the ratee’s perceived location on the performance continuum,     and 

   represent the perceived locations of the respective effectiveness statements, and 

 𝑎   
and  𝑏  are cumulative standard normal density functions evaluated at 𝑎   and 

𝑏  , respectively.  Note that each statement is characterized by a single parameter, but to 

compute UPP item response probabilities, three parameters (          𝜃 , are needed.    

Figure 1 presents three illustrative IRFs for the ZG model computed at 𝜃 values 

ranging from -3 to + 3.  Examination of the IRF for each pairwise preference item reveals 

that the probability of preferring statement s to statement t, 𝑃   𝜃 , ranges from near 0 to 

1.  However, the IRFs differ in slope, because the slope depends on the distance between 

the statements composing an item: the greater the distance, the steeper the slope. 

 The item shown in Figure 1a involves statements having location parameters, ( 
𝑠
 

= 2.5,  
𝑡
 −   ) respectively; the distance between them    

𝑠
−  

𝑡
  is 3.6.  Figure 1b 

presents the IRF for an item involving location parameters ( 
𝑠
= 0.3,  

𝑡
= 2.3), with the 

difference ( 
𝑠
−  

𝑡
)  −      Note also that: 1) the IRF in Figure 1b has a shallower 

slope than the IRF in Figure 1a because the distance between the respective statements in 

1b is smaller; 2) the IRF in Figure 1b is monotonically decreasing, rather than increasing, 

because      .  Finally, Figure 1c shows an IRF involving statements that have the 

same location parameters,  
𝑠
  

𝑡
    . Because the statements represent equivalent 

effectiveness levels, each has a 0.5 probability of being selected, regardless of the ratee’s 

performance score, 𝜃  

𝑎𝑠𝑡 = (2𝜃 −  𝑠 −  𝑡)/ 3 ,                                                                         (2) 

𝑏𝑠𝑡 =  𝑠 −  𝑡 , and                          (3) 
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Stark and Drasgow (1998, 2002) derived item information (Ii) for the ZG model 

based on Birnbaum’s (1968) definition.  The result is shown below: 

 

where     
 𝜃   − 𝑃   

 𝜃  
 
Using this equation, item information functions (IIFs) were 

computed for the items having IRFs shown in Figure 1. First, note that the function in 

Figure 2a is unimodal with a peak occurring halfway between the values of  
𝑠
= 2.5 and 

   −   . The IIF in Figure 2b has the same general form, but the peak is lower in 

accordance with the smaller difference between the location parameters,  
𝑠
 = 0.3 and    = 

2.3. Finally note that the IIF in Figure 2c provides zero information across the entire trait 

continuum. Because           , there is no basis for preferring one statement over 

another so random responding is expected. In general, item information depends directly 

on the distance between the statements composing an item, with greater distance being 

associated with higher information. As was shown by Stark and Drasgow (2002), 

however, item information nearly attains its maximum when statements are located about 

two units apart on the typical performance range.

 

 

The Person Fit Index  

 

Since the 1960s, many methods have been proposed for detecting aberrant or 

atypical response patterns (Karabatsos, 2003; Meijer & Sijtsma, 2001). Although early 

research focused on cognitive ability testing applications, with the primary goal of 

detecting cheating, answer sheet tampering, and carelessness that could cause spuriously 

zl
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high or low test scores (Hulin, Drasgow, & Parsons, 1983), applications eventually 

expanded into the noncognitive realm with the aim of detecting response sets, such as 

random or patterned responding, untraitedness, and faking (e.g., Drasgow, Levine, & 

Zickar, 1996; Egberink, Meijer, Veldkamp, Schakel, & Smid, 2010; Ferrando & Chico, 

2001; Hendrawan, Glas, & Meijer, 2005; Nering & Meijer, 1998; Reise, 1995; Reise & 

Due, 1991; Reise & Flannery, 1996; Schmitt, Chan, Sacco, McFarland, & Jennings, 

1999; van-Krimpen Stroop & Meijer, 1999; Zickar & Drasgow, 1996; Zickar & Robie, 

1999).  

Levine and colleagues used the term appropriateness indices (Levine & Drasgow, 

1982; Levine & Rubin, 1979) in reference to statistics broadly aimed at flagging 

inconsistencies between observed and expected answer patterns, but today the terms 

person fit indices and person fit statistics are common alternatives. Person fit, perhaps 

more clearly, implies that a psychometric model can merely describe the data better for 

some examinees than others, and response patterns that are inconsistent with model 

predictions do not necessarily indicate that anything inappropriate occurred during a 

testing session. By scrutinizing answer patterns having poor person fit statistics and by 

comparing fit statistics across subgroups, one can identify and remove atypical response 

patterns for data cleaning, test validation, and personnel selection purposes. One can also 

generate ideas about why examinees are mischaracterized and perhaps use that 

information to improve assessments or generalize psychometric models to take those 

ideas into account.  

In general, person fit statistics examine either residuals (i.e., differences between 

observed and expected responses patterns) or the likelihood of response patterns 
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assuming a formal model of item responding (Nering & Meijer, 1998). IRT methods 

generally use the latter. The likelihood of a response pattern is calculated using item and 

person parameter estimates for a designated item response model, and aberrant or 

atypical patterns are signaled by low (or, in the log metric, negative) likelihoods. The 

advantage of IRT methods is that they readily permit the assessment of overall model-

data fit unlike classical test theory methods. 

One of the most widely used and researched IRT-based person fit statistics is 

(Drasgow, Levine, & McLaughlin, 1987; Drasgow, Levine, & Williams; 1985). is 

popular for cognitive and noncognitive data screening, because it can be readily applied 

with different IRT models and it is capable of detecting several forms of aberrance (e.g., 

Bierenbaum, 1985, 1986; Nering, 1996; Nering & Meijer, 1998). For Zinnes-Griggs 

(1974) UPP model applications,  is computed as follows. First, the log likelihood of a 

rater’s response pattern is given by 

               

 
 

where 𝜃 is an estimate of θ, the latent trait representing a ratee’s trait or performance 

level, i is an index for items, i =1, …, n,   represents an item response coded 1 if 

statement s is preferred to statement t and 0 otherwise, is the probability of preferring 

statement s to statement t in the i
th

 item, and log represents the natural logarithm function. 

The approximate expectation of this log likelihood is 

  

The approximate variance is  

 

zl
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Finally, the approximately standardized person fit statistic is 

 

    
The standardization step is important because it eliminates the dependence of the 

resulting person fit statistic on test length and θ, which was a concern with the statistic 

that was proposed originally by Levine and Rubin (1979). 

The use of  for ZG UPP data screening thus requires observed item responses  

and estimates of ZG item parameters (   
    

  and trait scores (𝜃 . By substituting the 

values into the appropriate equations above, can be computed for each ratee’s response 

pattern and normal versus aberrant classification decisions can be made by comparing 

each observed  to a critical value. When an observed  is less than the critical , a 

response pattern is classified as aberrant because the data are inconsistent with the 

predictions of the ZG model. Patterns that are highly inconsistent with model predictions 

will have large negative  values (e.g., -2), whereas patterns that are consistent with 

model predictions will have positive  values (e.g., > +1) values on a roughly standard 

normal scale.  

 

Factors Influencing Efficacy 

One of the most widely studied issues associated with  is standardization. The 

original research by Drasgow et al. (1985) as well as subsequent examinations (e.g., 

Molenaar & Hoijtink, 1990) found that  is approximately, but not exactly, 

0l
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standardized. That is, the empirical distribution of departs somewhat from normality 

when 𝜃 is used instead of 𝜃 for the calculations (e.g., Molenaar & Hoijtink, 1990, 1996; 

Nering, 1997; Snijders, 2001; van-Krimpen Stroop & Meijer, 1999). Therefore, using a 

lower one-tailed critical value of, say, -1.64 for classification decisions could lead to 

Type I error rates that differ from the expected (.05) level.  

To address this limitation some authors have explored the use of empirical critical 

values as alternatives to those based on normality assumptions (Stark, Chernyshenko, & 

Drasgow, 2012; see also Nering, 1997; van-Krimpen-Stroop & Meijer, 1999). 

Essentially, one must simulate large numbers of normal response patterns based on actual 

exam or scale characteristics, compute for each pattern, find the value corresponding 

to the 5
th

 percentile, for example, and use that value as a lower-bound critical value for 

screening the real response data. Although this method has proven useful in other 

contexts, such as differential item functioning detection (e.g., Flowers, Oshima, & Raju, 

1999; Meade, Lautenschlager, & Johnson, 2007; Seybert & Stark, 2012), research is 

needed with to determine whether it provides better classification accuracy normal 

distribution theory critical values, especially when considering the computational 

complexity it introduces. 

Past studies involving applications of  and other person fit statistics have 

identified several other important factors affecting the detection of aberrant response 

patterns. First, certain types of aberrant responding appear to be easier to detect than 

others (Drasgow, 1982; Meijer, Molenaar, & Sijtsma, 1994; Rudner, 1983). For example, 

Levine and Rubin (1979) showed that power rates were consistently higher for aberrant 

examinees exhibiting spuriously high scoring on cognitive ability tests than for 

zl
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examinees exhibiting spuriously low scoring; or, in other words, cheating was easier to 

detect than careless responding. In addition, intuition suggests that faking might be 

difficult to detect, especially if the degree of distortion is consistent across items. If there 

are too few apparent inconsistencies between observed and predicted item response 

probabilities, then it would be virtually impossible to distinguish between truly high or 

low performance and spuriously high or low performance.  

A second factor affecting the power of person fit statistics is the proportion of 

items answered aberrantly. Several studies involving dominance IRT models have shown 

that higher proportions of aberrant responding are associated with higher detection rates 

(Drasgow et al., 1987; Karabatsos, 2003; Levine & Rubin, 1979). However, for some 

types of aberrance such as cheating or faking good, this relationship may actually be 

curvilinear. For example, with really high proportions of aberrant item responding, it 

would be difficult to separate cheaters from high ability examinees because both would 

be expected to answer most items correctly.   

Test composition has also been found to influence detection rates. Given the same 

type and relative proportions of aberrant responding, detection rates are consistently 

higher with longer tests (Emons, Sijtsma, & Meijer, 2004; Karabatsos, 2003; Nering & 

Meijer, 1998; Reise & Due, 1991), perhaps because trait scores are more accurately 

estimated and there are more opportunities to observe inconsistencies with model 

predictions.  Second, higher power and lower Type I error are typically observed with 

tests having more discriminating items (Emons et al, 2004; Meijer, 1997; Meijer, 

Molenaar, & Sijtsma; 1994) and more variation in item extremity (Reise, 1995). This 

makes intuitive sense because higher discrimination leads to higher test information and, 
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thus, more accurate trait estimation. And, variations in extremity highlight 

inconsistencies between predicted and observed responses given one’s estimated trait 

score. 

Finally, some recent studies have examined the effects of parameter estimation 

error on the power and Type I error of person fit indexes. In accordance with the 

statistical principle of consistency, large samples are always desirable for item/statement 

parameter estimation. The more these parameter estimates differ from their true values, 

the more error there will be in the estimated trait scores and, thus, the lower the power to 

detect aberrance. Fortunately, person fit research with single-statement measures has 

shown only small detrimental effects for parameter estimation error on power 

(Hendrawan, Glas, & Meijer, 2005; St-Onge, Valois, Adbous, & Germain, 2009). 

However, research is needed to see whether this finding generalizes to ZG-based UPP 

measures calibrated via marginal maximum likelihood estimation (Stark & Drasgow, 

2002). 
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METHOD 

Study Design 

This research investigated the power and Type I error rates for  aberrance 

detection using a Monte Carlo simulation involving four primary factors: 1) UPP test 

length (10 items, 20 items), 2) percent of items answered aberrantly (20%, 50%, 100%), 

3) response style (normal, random, fake good), and 4) test information (medium, high). In 

addition, to examine how UPP statement parameter estimation accuracy in a pretesting 

scenario would affect subsequent operational  screening decisions, classification 

accuracy was studied with empirical critical values using true and marginal maximum 

likelihood (MML) statement parameter estimates, based on samples of 1000 and 500 

examinees, respectively (TRUE, MML1000, MML500), as well as critical values based 

on normal distribution theory. For this aspect of the research, lower one-tailed critical 

values corresponding to nominal alpha levels of .01, .05, .10, and .20 were used.  Table 1 

presents the study design. 

 

Test Characteristics 

In preparation for this simulation, four tests were created to satisfy the test 

information and test length considerations mentioned above.  First, in accordance with 

the recommendation by Stark and Drasgow (2002), a 10-item high information UPP test 

was assembled by pairing statement parameters that differed by about 2.5 units along 

different parts of the trait continuum. The result was a test information function that had 
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an amplitude of approximately 5 near 𝜃     , as shown in Figure 3b. Next, a 10-item 

medium information test was created by paring statement parameters that differed by 

about 1.5 units along different parts of the trait continuum. The resulting test information 

function had an amplitude of about 3.5 near 𝜃     , as shown in Figure 3a. Finally, 20-

item medium and high information tests were created by adding replicas of the respective 

10-item tests. The resulting test information functions are shown in Figures 3c and 3d.  

Table 2 shows the “true” parameters for the 20-item medium and high information tests.  

 

Data Generation and    Analyses 

 Power and Type I error rates for  classification decisions were computed over 

100 replications in each of the 28 experimental conditions shown in Table 1. Power is 

defined as a “hit” or correct detection of an aberrant response pattern, whereas Type I 

error represents a “false alarm” or incorrect classification of a normal response pattern as 

aberrant. A C++ program was developed to perform the following sequence of steps for 

data generation and analysis in the simulation study. 

1. 1,000 trait scores (thetas) were obtained by sampling from a standard normal 

distribution. These “true” thetas were used in conjunction with the true item 

parameters, shown in Table 2, to simulate UPP responses to the four tests having 

information functions shown in Figure 3. 

2. “Normal” responses to each item of each test were simulated by computing the 

probability of preferring statement s to statement t in item i given a simulee’s true 

trait score (see Equation 1) and comparing the value to a random uniform number. 

Specifically, if 𝑃   
 𝜃  was greater than the random number, the response was 
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scored as 1; otherwise the response was scored as 0. (The data generated in this 

step corresponds to the assumption that in applied settings there are 

uncontaminated pretest data available for IRT estimation before operational  

screening.) 

3. Three sets of statement parameters for each of the four tests were used to 

investigate the effects of MML estimation error on  classification accuracy. 

Specifically the response data generated in Step 2 were calibrated using the ZG 

MML computer program (Stark & Drasgow, 2002) using the full sample of 1000 

simulees (MML1000) and a randomly selected subsample of 500 (MML500). The 

TRUE statement parameters served as a baseline for comparison.   

4. Three sets of  values were computed for each simulee using the true and 

estimated ZG statement parameters from Step 3 in conjunction with the respective 

expected a posteriori (EAP) trait score estimates provided by the ZG_EAP 

computer program (Stark, 2006).  

5. Lower one-tailed empirical critical values for “operational”  classification 

decisions were obtained by sorting the respective sets of observed  values from 

Step 4 in ascending order and identifying the values corresponding to the 1
st
, 5

th
, 

10
th

, and 20
th

 percentiles. Theoretical critical values for those same percentiles 

under normality assumptions were obtained by using an inverse normal 

probability table.   

6. New response data reflecting varying degrees of aberrance (0%, 20%, 50%, 100%) 

were generated to investigate  power and Type I error under an operational 

testing scenario. For the 0% (no aberrance or normal) conditions, 1,000 new trait 
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scores were sampled from a standard normal distribution and used to generate 

UPP responses to each of the four tests using the TRUE statement parameters. For 

the 20% and 50% aberrance conditions, item responses from those same data sets 

were randomly designated for replacement with fake good or random responses. 

In the 100% condition, all of the responses were replaced with fake good or 

random responses. Random responses were generated by sampling a random 

number from a uniform distribution and comparing it to 0.5. If the result exceeded 

0.5, the response was scored as 1; otherwise the response was scored as 0. Fake 

good responses were simulated by adding 1.5 to a simulee’s trait score when 

computing 𝑃   
 𝜃  for the designated items. If the result exceeded a randomly 

sampled uniform number, then the response was coded 1; otherwise 0. Simulating 

faking in this way has been referred to as the theta-shift method (Zickar, 2000; 

Zickar & Drasgow, 1996; Zickar & Robie, 1999). Note that the 0% conditions 

were used to investigate Type I error for  classification, while the 20%, 50% and 

100% conditions were used to examine power. 

7. As in Step 4, three sets of values were computed for each response pattern 

generated in the previous step using the true and MML statement parameter 

estimates and the resulting EAP trait scores. Each response pattern was then 

classified as normal or aberrant using each of the observed  values in 

conjunction with each of the empirical and theoretical critical values from Step 5. 

If the observed  was less than the critical , then the response pattern was 

classified as aberrant; otherwise the response pattern was classified as normal 

under the respective conditions.  

zl

zl

zl

zl zl



www.manaraa.com

18 

 

8. Type I error was computed for each of the critical values by calculating the 

proportion of response patterns in the 0% conditions that were misclassified as 

aberrant. Power was computed in the 20%, 50%, and 100% conditions by 

computing the proportion of response patterns that were correctly identified as 

aberrant. 

9. Steps 1 through 8 were repeated until 100 replications were performed. Upon 

completion of the replications, overall power and Type I error were calculated for 

each experimental condition by averaging the findings from Step 8 over 

replications. 

 

Hypotheses  

Based on theoretical assumptions and previous  research, the following 

hypotheses were formulated.  

1. Power will be higher for detecting random responding than fake good responding.  

2. Power to detect random responding will increase as a function of test length, 

information, and the percent of aberrant items. The highest power will be 

observed in the 20-item, high information conditions compared to the 10-item 

medium information conditions. 

3.  Power to detect fake good responding will be low overall. It will be near zero in 

the 100% aberrance conditions because it will be impossible to distinguish 

between responding based on true and inflated (spuriously higher) trait score 

estimates. Slightly higher power will be observed in the 20% and 50% aberrance 
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conditions where there will be at least some inconsistencies between expected and 

observed response probabilities on faked and non-faked items.  

4. Power will be highest and Type I error lowest overall when the TRUE statement 

parameters are used for  computations. Higher power and Type I error rates will 

be observed with MML1000 statement parameter estimates than MML500 

statement parameter estimates.  

5. Higher power and lower Type I error will be observed when using empirical 

 critical values in place of theoretical critical values for classification decisions, 

where the theoretical critical values for the 1
st
, 5

th
, 10

th
, and 20

th
 percentiles under 

standard normal assumptions are -2.33, -1.64, -1.28, and -0.84, respectively. 

 

Power and Type I error results were tabulated and ANOVA was used to test for 

the statistical significance of main effects and interactions involving up to three variables. 

Omega-square (  ) was used to examine these effect sizes, with values of .01, .06, 

and .14 representing small, medium, and large effects, respectively (Cohen, 1998). To 

address some specific hypotheses, a few planned comparisons were also performed. 

To provide a visual illustration of efficacy for detecting random and fake good 

responding, I also computed receiver operating characteristic (ROC) curves, which 

portray power (hits) as a function of Type I error (false alarms). Good performance is 

indicated by ROC curves that rise sharply to a level well above a diagonal line of 

reference corresponding to equal proportions.  

The ROCs were computed as follows. First, the  values for the samples of 

normal and aberrant examinees in each condition were sorted and the minimum and 
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maximum values were identified. Then cut scores (t) for classification decisions were 

obtained by starting with the lowest value and moving to the highest in increments of 0.1. 

For each cut score, I computed the proportion of normal examinees that would be 

misclassified as aberrant at that cut score (x(t)) and the proportion of aberrant examinees 

who would be correctly classified as aberrant (y(t)). These (x(t), y(t)) data points were 

used to plot power as a function of Type I error.  

 

  

zl



www.manaraa.com

21 

 

 

 

RESULTS 

Tables 3 through 5 show the average Type I error and power rates across the 100 

replications in each simulation condition. In particular, Table 3 presents detailed results 

for Type I error under conditions of test length (10 and 20 items), test information 

(medium and high information), type of statement parameters (TRUE, MML1000, 

MML500), and type of critical values (empirical, theoretical).   

As can be seen in Table 3, the Type I error rates for the empirical critical values 

matched perfectly with the respective nominal alpha levels. Specifically, Type I errors of 

.01, .05, .10, and .20 were found for the nominal alphas of .01, .05, .10, and .20, 

respectively, regardless of test length, test information, and the type of statement 

parameters. In contrast, with the exception of the .01 nominal alpha level, the theoretical 

critical values resulted in consistently lower than expected Type I errors and the negative 

bias increased as the nominal alpha increased from .05 to .20. Importantly, however, 

there were no marked differences in Type I error as a function of the type of statement 

parameters, test information, or test length.  

 Table 4 presents the power results for random response detection using empirical 

and theoretical  critical values. Examination of the conditions within Table 4 revealed 

several interesting patterns. First, with the exception of the .01 nominal alpha, power was 

slightly higher when using the empirical critical values, which is consistent with the 

findings of lower than expected Type I error for the theoretical critical values in Table 3. 

Second, power to detect random responding increased somewhat with test length and test 
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information, and there was a sharp improvement in overall power as the percentage of 

aberrant items increased. Importantly, these results clearly show that there was ample 

power to detect 100% random responding with informative tests, regardless of the type of 

critical value or statement parameters used for the computations.   

 Table 5 shows the power results for detecting faking good, which was 

operationalized as a consistent upward shift in trait scores on items that were designated 

as aberrant. As can be seen in the table, power to detect faking was poor in every case. In 

what were optimal conditions for detecting random responding (20 items, high 

information, 100% aberrance), power for detecting faking was only .16 with empirical 

critical values and a nominal alpha of .20, and the results were even worse with stricter 

alphas. Neither test length nor test information had a beneficial effect on power, nor did 

the use of true statement parameters nor empirical critical values. The only interesting 

finding is that power was lowest, as expected, in the respective 100% aberrance 

conditions due to the inability to distinguish an “across-the-board” faker from a truly 

high-trait responder. 

To buttress the interpretation of the power results in Tables 3 through 5 and 

address the specific hypotheses that were proposed above, an ANOVA and planned 

comparisons were conducted. Table 6 shows the ANOVA results for main effects and 

interactions that accounted for at least 1% of the variance in power. All of the factors 

manipulated were statistically significant (p < .05), with the largest effect observed for 

the type of aberrance. Power was markedly higher for detecting random responding than 

fake good responding (p < .0001;    = .478), which supported Hypothesis 1.   
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Note also that the ANOVA results showed a significant and large interaction 

effect (   = .231) between response style and percentage of aberrance. This interaction is 

portrayed graphically in Figure 4.   

Hypothesis 2 was also supported. It stated that power to detect random responding 

would increase with test length (p < .0001;    =.012), test information (p < .0001; 

   =.017), and the percentage of aberrant items (p < .0001;    = .122). As expected, the 

highest power was observed in the 20-item, high information conditions and the lowest 

power was found in the 10-item, medium information conditions.   

Hypothesis 3 stated that power to detect fake good responding would be low 

overall, which was confirmed by the results in Table 5. It also stated that power would be 

near zero in the 100% aberrance conditions and slightly higher in the 20% and 50% 

aberrance conditions. Individual planned comparisons supported that finding (p < .0001) 

and a trend analysis based on orthogonal polynomials revealed a statistically significant 

quadratic effect (F = 18.67; p < .001). 

Hypothesis 4 proposed that power would be highest and Type I error lowest 

overall when using the TRUE statement parameters for  computations, and better power 

and Type I error rates would be observed with MML1000 statement parameter estimates 

in comparison with MML500. Although this main effect was statistically significant (p 

< .05), there were no noteworthy differences in power across conditions and the effect 

size was extremely small (   < .001). Similarly, the Type I error rates were identical 

across types of statement parameters in the empirical conditions and only negligibly 

different in the theoretical critical value conditions. 
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Hypothesis 5 stated that higher power and lower Type I error would be obtained 

when using empirical critical values in place of theoretical critical values for aberrance 

detection. This hypothesis was not clearly supported. Although there was a statistically 

significant increase in power associated with using empirical critical values for aberrance 

detection (p <.05;   = .003), that can be attributed to the surprisingly lower than 

expected Type I error rates for the theoretical critical values shown in Table 3.  

Finally, panels (a) through (d) of Figure 5 present ROC curves illustrating the 

efficacy of for detecting random responding. The sharply rising, nearly right-angle 

shapes of the 100% random responding ROCs indicate nearly ideal performance – near 

perfect power with low Type I error. And although power dropped relative to Type I error 

in the 50% and 20% conditions, the ROC curves were still well above the reference line, 

indicating solid performance.   

In striking contrast, the inability of  to detect fake good responding in this 

simulation is demonstrated by the ROC curves in panels (a) through (d) of Figure 6. 

Consistent with expectations, the ROC curves for the 100% conditions either straddled or 

were below the reference line representing equal proportions of hits and false alarms. 

Slightly better and quite similar performance was observed for the 50% and 20% fake 

good conditions, but the slowly rising, relatively flat ROCs indicated generally poor 

performance. 
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DISCUSSION 

 The primary goal of this study was to investigate the efficacy of the  person fit 

statistic for detecting aberrant responding with UPP measures constructed and scored 

based on the Zinnes-Griggs (1974) IRT model, which has proven useful for a variety of 

noncognitive testing applications in organizational settings (e.g., Borman et al., 2001; 

Chernyshenko et al., 2009; Houston, Borman, Farmer and Bearden, 2005; Underhill, 

Lords, & Bearden, 2006). Because UPP measures are now being used to collect both 

“self-” and “other-” reports, we explored the capability of  to detect two of the most 

common and potentially detrimental response sets, namely fake good and random 

responding. The effectiveness of  was studied using empirical as well as theoretical 

critical values for classification, along with test length, test information, the type of 

statement parameters, and the percentage of items answered aberrantly (20%, 50%, 

100%).  

In short,  was ineffective for detecting fake good responding, with power 

approaching zero in the 100% aberrance conditions. However,  was highly effective for 

detecting random responding, with power approaching 1.0 in the long-test, high 

information conditions, and there was no diminution in efficacy when using MML 

estimates of statement parameters in place of the true values. Furthermore, although using 

empirical critical values for classification provided slightly higher power, theoretical 

critical values, corresponding to a standard normal distribution provided nearly as good 

results.  

zl

zl

zl

zl

zl



www.manaraa.com

26 

 

Finding that faking good is difficult to detect is not surprising. If a respondent 

fakes on a large proportion of items, there will be few apparent inconsistencies in the 

response pattern, making it difficult to distinguish a spuriously high from a truly high 

trait score. Similarly, if just a small percentage of items are faked, the likelihood of the 

response pattern would be very similar to that of a normal responder, which would also 

reduce hit rates. These results are consistent with the optimal appropriateness 

measurement findings and conclusions of Zickar and Drasgow (1996), who examined 

fake good response detection with Likert-type personality scales in an experiment 

involving coached and ad-lib faking conditions.  

Another interesting and important finding was that using MML statement 

parameter estimates based on samples of 500 yielded power and Type I error rates that 

were nearly identical to the true parameter values. This is consistent with the findings of 

small effects in research involving single-statement IRT models (Hendrawan, Glas, & 

Meijer, 2005; St-Onge, Valois, Adbous, & Germain, 2009). It is also good news for 

practitioners because the true parameters are never known and, for obvious reasons, 

pretest samples of 500 and smaller are preferred. In the future, it would be interesting to 

explore whether subject matter expert (SME) ratings of statement location would be as 

effective for  aberrance detection as the MML500 estimates, given that recent research 

with a ZG-based computer adaptive test showed little differences between trait scores 

based on true statement parameters, MML estimates, and SME ratings of statement 

location (Stark, Chernyshenko, & Guenole, 2011).  

 Finally, although previous  research has raised concern about the use of critical 

values based on normality assumptions (Nering, 1995; Reise, 1995; van Krimpen-Stoop 
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& Meijer, 1999), we found that a computationally intensive method of obtaining 

empirical critical values provided relatively small improvements. In this study, using 

theoretical critical values (i.e., those corresponding to a standard normal distribution) 

resulted in lower than expected Type I error rates, which, in turn, reduced power 

somewhat. In practice, using empirical critical values should enhance classification 

accuracy, but a reasonable simple alternative might be just to choose a slightly higher 

theoretical critical value for flagging examinees.   

 

Limitations and Suggestions for Future Research  

This study has some limitations that can be addressed in future research. First, it 

would be interesting to compare the performance of  with the performance of model-

based detection methods (i.e., optimal appropriateness measurement, OAM; Levine & 

Drasgow, 1988), which postulate different models for aberrance. Second, it might be 

beneficial to compare  efficacy with empirical and theoretical critical values using trait 

scores sampled from a negatively skewed distribution, which might better reflect the 

distribution of job performance scores among experienced incumbents. Finally, it might 

be interesting to investigate how  can be adapted for use with more complex forced 

choice formats, such as multidimensional pairs or tetrads, and whether the findings for 

the key variables examined here will generalize.  

 

Implications for Organizations 

 This research clearly demonstrated that  can be an effective method for 

detecting some forms of aberrant responding with noncognitive measures. It is highly 
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effective for detecting random responding, which may occur if incumbents become 

unmotivated because they are surveyed too frequently, if managers are inattentive in 

evaluating subordinates’ performance, or employees or applicants are informed that 

measures are being administered for “research only” purposes. Flagging unmotivated 

respondents can be helpful to organizations in identifying courses of action that will 

increase engagement, such as counseling, incentives or, conversely, sanctions. 

Organizations should also explore whether simply being flagged as “aberrant” predicts 

important components of job performance.  

 This simulation also showed that  cannot be recommended for detecting faking 

good at this time. Although faking good remains a preeminent concern with noncognitive 

testing, particularly in selection environments, this research indicates that organizations 

should continue to actively explore other methods for detecting and preventing faking, 

such as social desirability scales, tracking response latencies, warnings, and 

multidimensional forced choice formats. Moreover, even if statistically effective faking 

detection methods are eventually developed, organizations will still have to grapple with 

what to do with the individuals who are flagged. Disqualifying them from an application 

or promotion process with the looming possibility that a flag is a false positive could 

have important legal ramifications that would eradicate anticipated utility gains.  With 

that in mind, allowing a retest or conducting a follow-up diagnostic interview might be a 

more judicious next step in the review process.  
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TABLE 1. Simulation Study Design 

 

 
 

 

 

  

Cell# Response Style Test Length(# Items) Test Information % Aberrant Items

1 Normal 10 Medium 0

2 Normal 10 High 0

3 Normal 20 Medium 0

4 Normal 20 High 0

5 Random 10 Medium 20

6 Random 10 Medium 50

7 Random 10 Medium 100

8 Random 10 High 20

9 Random 10 High 50

10 Random 10 High 100

11 Random 20 Medium 20

12 Random 20 Medium 50

13 Random 20 Medium 100

14 Random 20 High 20

15 Random 20 High 50

16 Random 20 High 100

17 Fake Good 10 Medium 20

18 Fake Good 10 Medium 50

19 Fake Good 10 Medium 100

20 Fake Good 10 High 20

21 Fake Good 10 High 50

22 Fake Good 10 High 100

23 Fake Good 20 Medium 20

24 Fake Good 20 Medium 50

25 Fake Good 20 Medium 100

26 Fake Good 20 High 20

27 Fake Good 20 High 50

28 Fake Good 20 High 100
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TABLE 2. True Statement Parameters for the 20-Item Medium and High Information 

Tests 

 

Item

1 0.63 2.12 1.49 1.37 0.13 2.62 2.49 1.37

2 0.01 1.37 1.36 0.69 -0.49 1.87 2.36 0.69

3 -0.72 0.82 1.54 0.05 -1.22 1.32 2.54 0.05

4 1.83 0.29 1.54 1.06 2.33 -0.21 2.54 1.06

5 -2.84 -1.26 1.58 -2.05 -3.34 -0.76 2.58 -2.05

6 -1.24 0.26 1.49 -0.49 -1.74 0.76 2.49 -0.49

7 1.65 0.12 1.53 0.89 2.15 -0.38 2.53 0.89

8 0.63 -0.82 1.45 -0.10 1.13 -1.32 2.45 -0.10

9 -0.85 -2.39 1.54 -1.62 -0.35 -2.89 2.54 -1.62

10 2.89 1.39 1.50 2.14 3.39 0.89 2.50 2.14

Mean 0.20 0.19 1.50 0.20 0.20 0.19 2.50 0.20

11 0.63 2.12 1.49 1.37 0.13 2.62 2.49 1.37

12 0.01 1.37 1.36 0.69 -0.49 1.87 2.36 0.69

13 -0.72 0.82 1.54 0.05 -1.22 1.32 2.54 0.05

14 1.83 0.29 1.54 1.06 2.33 -0.21 2.54 1.06

15 -2.84 -1.26 1.58 -2.05 -3.34 -0.76 2.58 -2.05

16 -1.24 0.26 1.49 -0.49 -1.74 0.76 2.49 -0.49

17 1.65 0.12 1.53 0.89 2.15 -0.38 2.53 0.89

18 0.63 -0.82 1.45 -0.10 1.13 -1.32 2.45 -0.10

19 -0.85 -2.39 1.54 -1.62 -0.35 -2.89 2.54 -1.62

20 2.89 1.39 1.50 2.14 3.39 0.89 2.50 2.14

Mean 0.20 0.19 1.50 0.20 0.20 0.19 2.50 0.20

Medium Information High Information

*Note. Means in the last row are for the full 20 item tests.

      −                 −           
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TABLE 3. Type I Error Rates for Empirically and Theoretically Driven Critical Values 

 

 

Length Information Parameter .01 .05 .10 .20 .01 .05 .10 .20

10 Medium TRUE .01 .05 .10 .20 .01 .04 .07 .13

MML1000 .01 .05 .10 .20 .02 .04 .07 .13

MML500 .01 .05 .10 .20 .01 .04 .08 .13

High TRUE .01 .05 .10 .20 .02 .04 .06 .11

MML1000 .01 .05 .10 .20 .02 .04 .06 .10

MML500 .01 .05 .10 .20 .01 .03 .05 .09

20 Medium TRUE .01 .05 .10 .20 .01 .04 .08 .14

MML1000 .01 .05 .10 .20 .01 .04 .07 .14

MML500 .01 .05 .10 .20 .01 .04 .07 .13

High TRUE .01 .05 .10 .20 .02 .04 .07 .13

MML1000 .01 .05 .10 .20 .01 .04 .06 .12

MML500 .01 .05 .10 .20 .01 .03 .06 .11

Empirical Critical Values Theoretical Critical Values

Nominal Alpha Nominal Alpha 



www.manaraa.com

32 
 

TABLE 4. Power Rates of Random Responding for Empirically and Theoretically Driven 

Critical Values 

 

 

 

 

 

 

 

 

 

 

 

Length Information Aberrancy Parameter .01 .05 .10 .20 .01 .05 .10 .20

Medium 20% TRUE .03 .13 .23 .38 .04 .11 .16 .26

MML1000 .03 .13 .23 .38 .04 .11 .17 .26

MML500 .03 .13 .23 .38 .04 .11 .16 .26

50% TRUE .15 .40 .53 .69 .19 .37 .47 .58

MML1000 .16 .40 .54 .69 .20 .37 .47 .59

MML500 .16 .40 .54 .69 .21 .37 .47 .59

100% TRUE .47 .71 .81 .89 .52 .69 .77 .84

MML500 .47 .71 .81 .89 .52 .68 .76 .84

MML1000 .47 .71 .81 .89 .52 .69 .77 .84

High 20% TRUE .08 .22 .34 .51 .11 .20 .29 .36

MML1000 .08 .23 .35 .51 .09 .18 .25 .34

MML500 .08 .24 .35 .51 .08 .17 .24 .33

50% TRUE .43 .62 .71 .80 .52 .60 .66 .73

MML1000 .44 .63 .71 .81 .50 .59 .64 .72

MML500 .43 .63 .71 .80 .48 .58 .63 .71

100% TRUE .76 .89 .92 .96 .82 .88 .90 .93

MML1000 .77 .89 .92 .96 .80 .87 .90 .92

MML500 .76 .89 .92 .96 .78 .86 .89 .92

Medium 20% TRUE .05 .17 .27 .43 .06 .14 .22 .34

MML1000 .05 .17 .27 .43 .06 .14 .22 .33

MML500 .05 .17 .27 .43 .06 .14 .21 .33

50% TRUE .37 .63 .75 .86 .40 .60 .70 .81

MML1000 .37 .63 .75 .86 .39 .59 .69 .80

MML500 .37 .63 .75 .86 .39 .59 .69 .79

100% TRUE .81 .93 .96 .98 .83 .92 .95 .97

MML1000 .81 .93 .96 .98 .82 .91 .95 .97

MML500 .81 .93 .96 .98 .82 .91 .95 .97

High 20% TRUE .12 .27 .38 .55 .15 .25 .33 .44

MML1000 .12 .28 .40 .56 .14 .23 .31 .42

MML500 .12 .28 .40 .56 .13 .22 .29 .41

50% TRUE .70 .86 .91 .95 .75 .85 .89 .93

MML1000 .71 .86 .91 .95 .74 .84 .88 .92

MML500 .71 .86 .91 .95 .72 .82 .87 .92

100% TRUE .96 .99 .99 1.00 .97 .99 .99 1.00

MML1000 .96 .99 .99 1.00 .97 .98 .99 .99

MML500 .96 .99 .99 1.00 .96 .98 .99 .99

20

Empirical Critical Values Theoretical Critical Values

Nominal Alpha Nominal Alpha

10
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TABLE 5. Power Rates of Fake Good Responding for Empirically and Theoretically 

Driven Critical Values 

 

 

 

 

 

 

 

Length Information Aberrancy Parameter .01 .05 .10 .20 .01 .05 .10 .20

10 Medium 20% TRUE .02 .10 .19 .33 .03 .09 .13 .23

MML1000 .02 .10 .19 .33 .03 .09 .13 .23

MML500 .02 .10 .19 .33 .03 .09 .13 .23

50% TRUE .03 .11 .19 .32 .04 .10 .14 .23

MML1000 .03 .11 .20 .34 .04 .10 .15 .23

MML500 .03 .11 .19 .34 .04 .09 .15 .23

100% TRUE .01 .05 .09 .18 .01 .04 .07 .12

MML1000 .01 .05 .10 .20 .01 .04 .07 .12

MML500 .01 .05 .10 .19 .02 .04 .07 .12

High 20% TRUE .04 .16 .25 .45 .06 .15 .22 .27

MML1000 .04 .17 .26 .45 .05 .13 .19 .25

MML500 .04 .17 .26 .44 .05 .12 .18 .25

50% TRUE .05 .17 .31 .44 .08 .15 .20 .33

MML1000 .05 .17 .29 .44 .07 .13 .19 .30

MML500 .06 .17 .29 .43 .06 .12 .18 .28

100% TRUE .01 .04 .08 .16 .02 .03 .05 .09

MML1000 .01 .04 .08 .16 .01 .03 .04 .07

MML500 .01 .04 .08 .16 .01 .03 .04 .07

20 Medium 20% TRUE .03 .11 .20 .34 .04 .10 .16 .26

MML1000 .03 .12 .20 .34 .04 .10 .16 .26

MML500 .03 .11 .20 .34 .04 .10 .15 .25

50% TRUE .03 .11 .19 .33 .03 .09 .15 .25

MML1000 .03 .11 .19 .33 .03 .09 .14 .24

MML500 .03 .11 .19 .33 .03 .09 .14 .24

100% TRUE .01 .04 .09 .18 .01 .04 .06 .12

MML1000 .01 .05 .09 .18 .01 .04 .07 .12

MML500 .01 .05 .10 .19 .01 .04 .06 .12

High 20% TRUE .05 .17 .29 .45 .07 .15 .22 .32

MML1000 .06 .18 .29 .45 .07 .14 .20 .31

MML500 .06 .18 .29 .45 .06 .13 .19 .29

50% TRUE .04 .15 .26 .41 .06 .13 .20 .30

MML1000 .05 .16 .27 .41 .06 .12 .18 .29

MML500 .05 .16 .26 .41 .05 .11 .17 .27

100% TRUE .01 .04 .08 .16 .01 .03 .06 .10

MML1000 .01 .04 .08 .15 .01 .03 .05 .09

MML500 .01 .04 .08 .15 .01 .02 .04 .08

Empirical Critical Values Theoretical Critical Values

Nominal Alpha Nominal Alpha 
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TABLE 6. Main Effects and Interactions for Studied Variables on Power Rates 

 
*Note. All effects shown were significant at p <.05. Only interaction effects that  

accounted for at least 1% of the variance in power are included.   =proportion of  

variance accounted for by the independent variables. dfB = degrees of freedom  

between; for all effects; degrees of freedom within = 392.  

Source F

Response style (R) 1 77698.7 0.48

Percentages of aberrance (A) 2 9945.61 0.12

Nominal alpha 3 469.65 0.09

Test information 1 284.17 0.02

Test length (L) 1 1961.02 0.01

Type of critical values 1 528.7 0.00

Type of statement parameters 2 3.19 0.00

R*A 2 18474.4 0.23

R*L 1 1859.85 0.01

   



www.manaraa.com

35 

 

 

 

FIGURE 1. Illustrative Item Response Functions (IRFs) for the Zinnes and Griggs 

Model:  (a) the item involves statements having location parameter   = 2.5 and   = -1.1, 

(b) the item involves statements having location parameters,   = 0.3 and   = 2.3, (c) the 

item involves statement having location parameters,   =  = 0.9. 
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FIGURE 2. ZG Item Information Functions for the Items Appearing in FIGURE 1
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 FIGURE 3. Test Information Functions for the  Monte Carlo Simulation
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FIGURE 4. Interaction of Response Style and Percentage of Aberrance 
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FIGURE 5. Receiver Operating Characteristic (ROC) Curve for Detecting Random 

Responding 
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FIGURE 6. Receiver Operating Characteristic (ROC) Curve for Detecting Fake Good 

Responding  
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APPENDIX 

10 Pairs of CARS UPP Items  

 

In each pair that follows, please choose the statement that better describes the employee 

you are evaluating. 

1a. Approaches work with a strong sense of urgency (e.g., constantly pushes self and 

others for positive results, has a strong tendency to take action). 

1b. In most cases, takes the initiative to complete tasks on or ahead of time. 

2a. Is at times overly reactive rather than proactive, but generally produces a reasonably 

effective product. 

2b. Usually seeks help when a work-related problem occurs; is hesitant to initiate action 

that results in moving forward on important tasks. 

3a. Completes own tasks with some initiative, but requires a fair amount of oversight to 

achieve acceptable standards for most tasks or missions. 

3b. Tasks are always completed after the established deadline despite considerable 

prompting by supervisors. 

4a. Generally will complete assigned tasks on time with occasional oversight from own  

immediate supervisor. 

4b. Routinely demonstrates a good ability to complete all assigned tasks by initiating 

early actions that provide momentum toward task completion.  

5a. May gather insufficient or irrelevant data, inaccurately assess available resources, or 

develop inadequate plans relative to completing work/assignments. 
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5b. Aims at providing balanced analyses when situations require the integration of input 

from a variety of sources. 

6a. When analyzing data or a problem, effectively identifies the important pieces of 

information to help solve problems or accomplish different tasks. 

6b. Fully understands and analyzes relatively straightforward tasks, and can sometimes 

provide analyses of more complex tasks. 

7a. Understands the issues surrounding most problems or situations, but cannot always 

apply that knowledge to construct the best possible solution. 

7b. Conducts analyses those are usually helpful for decision making. 

8a. Resists new directions, priorities, or objectives, but respects the chain of command  

sufficiently to help implement those changes. 

8b. Most of the time effectively adapts to changing situations, but is not as good at 

adapting in highly ambiguous or uncertain conditions. 

9a. Has some difficulty in an environment where changing unit goals create uncertainty, 

but is able to adjust reasonably well to change and convey new goals to subordinates 

to meet objectives. 

9b. Is sometimes unsure how to help subordinates cope with periods of change and 

transition. 

10a. Is comfortable working with diverse groups of individuals in a broad range of 

situations and settings. 

10b. Thrives in a dynamic work environment, and is always open to new ideas and 

methods for accomplishing goals. 
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